Nondifferentiable and Two-Level Mathematical Programming by Kiyotaka Shimizu

Page Updated:
Book Views: 2

Author
Kiyotaka Shimizu
Publisher
Springer
Date of release
Pages
470
ISBN
9781461378952
Binding
Paperback
Illustrations
Format
PDF, EPUB, MOBI, TXT, DOC
Rating
5
64

Advertising

Get eBOOK
Nondifferentiable and Two-Level Mathematical Programming

Find and Download Book

Click one of share button to proceed download:
Choose server for download:
Download
Get It!
File size:14 mb
Estimated time:1 min
If not downloading or you getting an error:
  • Try another server.
  • Try to reload page — press F5 on keyboard.
  • Clear browser cache.
  • Clear browser cookies.
  • Try other browser.
  • If you still getting an error — please contact us and we will fix this error ASAP.
Sorry for inconvenience!
For authors or copyright holders
Amazon Affiliate

Go to Removal form

Leave a comment

Book review

The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations.


Readers reviews